Monitoring systems for wind power plant generator

Mariana Iorgulescu
University of Pitesti
Objectives

• Wind Power Plant in Electric Power System

• Types of electrical machines used in wind power plants- asynchronous generator

• Monitoring system of asynchronous generator
Energy power system

- non-renewable and renewable energy, wind power technology (wind turbine types, wind turbine subsystems, blades, generator, etc).

- future technology related to improving performance and reducing costs in wind power plants.
Global cumulative wind power capacity

2013 growth: - 21%

GLOBAL ANNUAL INSTALLED WIND CAPACITY 1996-2013

18 yr avg. growth: 23.7%
Top 10 cumulative & new installed capacity

TOP 10 CUMULATIVE CAPACITY DEC 2013

<table>
<thead>
<tr>
<th>Country</th>
<th>MW</th>
<th>% SHARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR China</td>
<td>91,424</td>
<td>28.7</td>
</tr>
<tr>
<td>USA</td>
<td>61,091</td>
<td>19.2</td>
</tr>
<tr>
<td>Germany</td>
<td>34,250</td>
<td>10.8</td>
</tr>
<tr>
<td>Spain</td>
<td>22,959</td>
<td>7.2</td>
</tr>
<tr>
<td>India</td>
<td>20,150</td>
<td>6.3</td>
</tr>
<tr>
<td>UK</td>
<td>10,531</td>
<td>3.1</td>
</tr>
<tr>
<td>Italy</td>
<td>8,552</td>
<td>2.7</td>
</tr>
<tr>
<td>France</td>
<td>8,254</td>
<td>2.6</td>
</tr>
<tr>
<td>Canada</td>
<td>7,803</td>
<td>2.5</td>
</tr>
<tr>
<td>Denmark</td>
<td>4,772</td>
<td>1.5</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>48,332</td>
<td>15.2</td>
</tr>
<tr>
<td>Total TOP 10</td>
<td>269,785</td>
<td>84.8</td>
</tr>
<tr>
<td>World Total</td>
<td>318,117</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: GWEC

TOP 10 NEW INSTALLED CAPACITY JAN-DEC 2013

<table>
<thead>
<tr>
<th>Country</th>
<th>MW</th>
<th>% SHARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR China</td>
<td>16,100</td>
<td>45.6</td>
</tr>
<tr>
<td>Germany</td>
<td>3,238</td>
<td>9.2</td>
</tr>
<tr>
<td>UK</td>
<td>1,883</td>
<td>5.3</td>
</tr>
<tr>
<td>India</td>
<td>1,729</td>
<td>4.9</td>
</tr>
<tr>
<td>Canada</td>
<td>1,599</td>
<td>4.5</td>
</tr>
<tr>
<td>USA</td>
<td>1,084</td>
<td>3.1</td>
</tr>
<tr>
<td>Brazil</td>
<td>953</td>
<td>2.7</td>
</tr>
<tr>
<td>Poland</td>
<td>894</td>
<td>2.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>724</td>
<td>2.1</td>
</tr>
<tr>
<td>Romania</td>
<td>695</td>
<td>2.0</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>6,402</td>
<td>18.1</td>
</tr>
<tr>
<td>Total TOP 10</td>
<td>28,899</td>
<td>82</td>
</tr>
<tr>
<td>World Total</td>
<td>35,301</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Source: GWEC
• **Wind definition**: a natural movement of air of any velocity; *especially*: the earth's air or the gas surrounding a planet in natural motion horizontally (according to Merriam–Webster dictionary)

• **Wind energy** : wind is a form of **solar energy**.

Winds are caused by:
- the uneven heating of the atmosphere by the sun,
- the irregularities of the earth's surface,
- rotation of the earth.

Wind flow patterns are modified by the earth's terrain, bodies of water, and vegetative cover.

This wind flow, or motion energy, when "harvested" by modern **wind turbines**, can be used to generate **electricity**.
Equation of wind power

Kinetic energy: \(E_c = \frac{1}{2} m v^2 \)
Power = \(E_c \) per unit time
Fluid mechanics gives \(P = \frac{1}{2} \rho A v^3 \)
\(\rho \) - air density
A - rotor swept area
v - speed of air
Wind power technology

- Horizontal axis
- Vertical axis
 - Darrieus rotor
 - Savonius rotor
Wind turbine subsystems
Electrical generator

- Synchronous/permanent magnet generator
 - potential use without gearbox
 - high cost
- Asynchronous/induction generator
 - slip (operation below synchronous speed possible)
 - reduce gearbox wear
Components parts of induction generator
Squirrel cage induction machine rotor
Wound rotor induction generator
Operating principle of induction machine

Diagram showing the stator rotating magnetic field creating a rotor field by induced current flow in rotor conductors.
Synchronous speed: \[n_s = \frac{60 f_1}{2p} \]

\[f_1 = \frac{\omega}{2\pi}, \text{ stator current frequency} \]

\[s = \frac{n_s - n}{n_s} \times 100\% \quad \text{Slip of induction motor} \]
Load characteristics of induction machine
Basic problems of the induction machine fault’s

1. Winding faults:
 • short-circuits of stator windings,
 • short-circuits of rotor windings, broken rotor bars,
 • broken rings of the rotor.

2. Faults of the magnetic circuit:
 • air-gap asymmetry
 • stacking clearance.

3. Faults of the machine mechanical system (mainly bearing failures).
The techniques used to detect the presence of bearings and rotor failure

- vibration spectrum
- noise spectrum
- monitored stator current – rms value
- monitored stator current spectrum
Fast Fourier Transform
\[x_\tau(t) = \sum_{m=-\infty}^{\infty} x(t - m\tau) \]
\[x_\tau(t) = \sum_{i=-\infty}^{\infty} A_i e^{ji\omega_0 t} \quad \omega_0 = \frac{2\pi}{\tau} \]

\[A_i = \frac{1}{\tau} X(i\omega_0) \]

\[x_\tau(t) = \frac{1}{\tau} \sum_{i=-\infty}^{\infty} X(i\omega_0) e^{ji\omega_0 t} \]
Fast Fourier Transform

a) Graph showing a function $x(t)$ and its transform $X(\omega)$.

b) Graph showing a time series $x_\tau(t)$.

c) Graph illustrating the magnitude $|X(\omega)|$ and phase $\phi(\omega)$ of the Fourier transform.

d) Graph showing the frequency spectrum $A_1 = \frac{1}{\tau} |X(i\omega_0)|$ with frequencies $\omega = \omega_0, \omega_0 + (N-1)\omega_0$.

Series Fourier complex
e) ...

\[x(k) \]

\[k \]

\[x(k) \]

\[kT_e \]

\[T_e \]

\[\tau = NT_e \]

f) ...

\[X^*(\omega) \]

\[1/T_e \]

\[-\omega_M \]

\[\omega_M \]
\[x(t) = \begin{cases} \frac{1}{\tau} \cdot \sum_{i=-\infty}^{\infty} X(i\omega_0) \cdot e^{ji\omega_0t}, & 0 \leq t \leq \tau \\ 0, & \text{in rest} \end{cases} \]

\[T_e = \frac{1}{2f_M} \quad \quad f_M = \frac{\omega_M}{2\pi} \]

\[N = \frac{\tau}{T_e} \quad \quad t = k \cdot T_e \]

\[X(\omega) = T_e \cdot \sum_{k=0}^{N-1} x(k) \cdot e^{-j\omega kT_e} \]

\[X^*(i) = \sum_{k=0}^{N-1} x(k) \cdot e^{-jik \frac{2\pi}{N}}, \quad i = 0, 1, 2, \ldots, N-1 \]
Spectral characteristic of the signal
Rotor bars diagnosis in induction machine based on the vibration and current spectrum analysis
The reasons for rotor bars breakage

- Magnetic stresses caused by electromagnetic forces, unbalanced magnetic pull, electromagnetic noise and vibration;
- Thermal stresses due to thermal overload and unbalance, hot spots or excessive losses, sparking;
- Mechanical stresses due to loose laminations, fatigued parts, bearing failure;
- Residual stresses due to manufacturing problems;
- Environmental stresses cause for example by contamination and abrasion of rotor material due to chemicals or moisture;
- Dynamic stresses arising from shaft torques, centrifugal forces and cyclic stresses.
The techniques used to detect the presence of rotor bars failure

- vibration spectrum
- noise spectrum
- monitored stator current spectrum
The vibration analyses

Operations that instruments must perform are the following:

• Measurement of overall vibration level in a standard frequency range and using the units required by these standards;
• Spectral analysis of the vibration, by using FFT.
• Analysis of the oscillation power of separate vibration components extracted preliminary from the vibration signal. The analysis of the spectrum of random high frequency vibration signal is usually used;
• Spectral analysis of the stator current, by using FFT
Rotor cage representation with broken bars
Vibration motor’s measured stand
Harmonic vibration spectra for “healthy” induction machine
Harmonic vibration spectra for induction machine with one broken bar
Harmonic vibration spectra for induction machine with three broken bars
Comparation between harmonic vibration spectrums for healthy and fault rotor bars
Comparation between vibration spectrum “healthy” and rotor bars fault at 50Hz frequency
Comparison between vibration spectrum “healthy” and rotor bars fault at 100 Hz frequency
STATOR CURRENT SPECTRUM MONITORING

Comparation between harmonic stator current spectrums for “healthy” and fault rotor bars
Comparation between stator current spectrum “healthy” and rotor bars fault at 50Hz
Comparation between stator current spectrum “healthy” and rotor bars fault at 150Hz frequency
CONCLUSIONS

• The technique of evaluating the machine condition by performing a FFT of the induction machine vibration and the stator current has been verified by the experimental results. In this case electric machine vibration motorizing is very useful to detect rotor faults.

• By the corresponding zoom we can observe that vibration and stator current it is different at the “healthy” machine related fault motor.

• Thanks to these methods the diagnosis of broken rotor bars could be done even if the machine operated unloaded.
Vibration and Current Monitoring for Bearing Fault’s Diagnosis of Induction Machine
Mechanical problems in induction machine

- Bearing wear and failure. As a result of bearing wear, air gap eccentricity can increase, and this can generate serious stator core damage and even destroy the winding of the stator;

- High mechanical unbalance in the rotor increases centrifugal forces on the rotor;

- Looseness or decreased stiffness in the bearing pedestals can increase the forces on the rotor;

- Critical speed shaft resonance increases forces and vibration on the rotor core.
Test bench multianalyser
Vibration machines’s measured stand
THE VIBRATION SIGNATURE OF INDUCTION MACHINE
Harmonic vibration spectra for induction machine with “good” bearing

\[\text{Autospectrum (vibr 1) - Input 1} \]

\[\text{Working: Input: Input: FFT Analyzer} \]

\[\begin{align*}
\text{Hz} & \quad \text{m/s}^2 \\
10 & \quad 0 \\
30 & \quad 200 \\
100 & \quad 400 \\
300 & \quad 600 \\
1k & \quad 800 \\
3k & \quad \text{OVERLOAD} \\
10k & \quad \text{m/s}^2 \\
\end{align*} \]
Harmonic vibration spectrum for induction motor with “bad” bearing

\[f = f_r \]
Comparison between harmonic vibration spectrums for healthy and bad bearing
THE STATOR CURRENT SIGNATURE OF INDUCTION MACHINE
Harmonic current spectrum for induction motor with “health” bearings

Autospectrum(vibr) - Input
Working : Input : Input : FFT Analyzer

[V]

10m
1m
100u

[Hz]
30 100 300 1k 3k 10k
Harmonic current spectrum for induction motor with “bad” bearing
CONCLUSIONS

• The technique of evaluating the motor condition by performing a FFT of the induction motor vibration has been verified by the experimental results.

• In this case electric machine vibration motorizing is very useful to detect bearing fault.

• The wind power plant maintenance can easily and successfully detect mechanical fault that lead to unexpected downtime.
References

- **M.Iorgulescu, R.** Beloiu, ” Vibration and current monitoring for fault's diagnosis of induction motors” ICATE 2008 - 9-th International Conference on Applied and Theoretical Electricity, Annals of the University of Craiova, Electrical Engineering series, No. 32, 2008; ISSN 1842-4805, pag 102-107, Copernicus Indexed